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The present paper gives an outline of a theory of structure and thermodynamic properties of organic 
crystals, based on the following assumptions. 

1. Lattice binding energy may be calculated as total energy of interaction of all pairs of atoms of 
different molecules. 

2. Free vibrational energy may be subdivided into intra- and intermolecular parts. 
Methods have been devised for the calculation of thermodynamic properties of organic crystals, 

based on their structure. Several examples illustrate good agreement with experiment. It has been 
shown that the theory of close packing of molecules is a consequence of a more general theory with 
some additional simplifying assumptions. 

Introduction 

We believe it has been convincingly shown (Kitaj- 
gorodskij, 1945, 1959) that organic crystals are built 
according to the principle of close packing. This as- 
sertion means the following. It is possible to select 
sufficiently universal intermolecular radii with the 
help of which a certain shape may be given to a mole- 
cule. This done, a crystal will turn out to be a close 
packing of solids: adjacent molecules dovetail. When 
comparing an actual structure with imaginary ones 
having different cells and symmetry, we shall see that 
it is impossible to select structures that would be 
appreciably more closely packed than the actual one. 

The theory of close packing has been supported, 
first of all, by our conclusion concerning the space 
groups possible for organic crystals. Rules of chemical 
organic crystallography thus obtained are rigorously 
observed. Quite recently Zorky & Poraj-Ko~ic (1961) 
worked out a geometric method of selection of closest 
packings of arbitrarily chosen convex figures. The 
tightest structures have been theoretically derived for 
molecules of two different substances. In both cases the 
experimentally observed structure was found among the 
tightest packings. 

In some simple cases (paraffins) the principle of 
close packing was successfully used for deducing pos- 
sible structures. In most cases this work is impossible 
without limiting conditions because it is possible for 
a given molecule to have different crystal structures 
of closely similar densities. However, if the cell and 
symmetry are given, the packing of molecules can be 
often found from the condition of equality of all 
intermolecular distances of atoms of one kind. This 
indirect application of the close-packing idea is very 
often used in chemical organic crystallography. 

Despite the obvious validity of the theory of close 
packing, the geometric aspect of this theory leaves 
one with a certain feeling of dissatisfaction. The 

actual structure corresponds to the condition of mini- 
mum free energy. But why is the geometric principle 
of close packing a consequence of minimum free 
energy? In the present paper we shall try to answer 
this question. 

But the substantiation of the principle of close 
packing is not the goal per se. The present paper gives 
an analysis of the possibilities of building up a theory 
relating the structure of an organic crystal with its 
mechanical and thermodynamic properties. The geo- 
metric theory of close packing of molecules in a crystal 
is a consequence of the quantitative model proposed 
in the paper, with certain simplifying assumptions. 

Free energy of an organic crystal 

It is well-known (e.g. Leibfried, 1955) that when the 
energy difference between the ground and the first ex- 
cited electron states is more than 1 eV (which is always 
the case in organic crystals, since they are quite perfect 
dielectrics) one can make use of the so-called adiaba- 
tic approximation which permits the reduction of the 
Coulomb interaction of nuclei and electrons to the 
interaction of atoms. In this case the potential energy 
of atomic interaction, which depends on the coordina- 
tes of nuclei ( 'centres'  of atoms) only, appears to be 
equal to the energy of the ground electron level. 

The free energy of an organic crystal is expressed by 
the equation 

F= H(rO + E -  TS , 

where H is the equilibrium value of the potential 
energy, and E is the vibration energy of the atoms. 
The energy E and the entropy S are unambiguously 
defined by the values of the vibration terms. 

Thus, quantum mechanics rigorously enables us to 
'forget" about electrons and to reduce our problem 
to the study of the arrangement and motion of atoms. 
But in the case of organic crystals we can go somewhat 
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further, if we subdivide free energy into two parts, 
inter- and intramolecular: 

F =  Fer + Fm 
where 

Fm= ~,(r~) + E r a -  TSm 
For = ~0(R~,~) + E o r -  TSar.  

This subdivision of F is adequate because vibratio- 
nal intermolecular states remain practically unchanged 
upon entering a crystal. The potential energy gt also 
must correspond to the energy of a free molecule; 
it changes in specific cases only, which will be dealt 
with below. 

Intermolecular (crystal) free energy is defined by 
intermolecular vibration states connected with trans- 
lational and vibrational movement of molecules. Each 
molecule vibrates as a solid with 6 degrees of freedom; 
thus 3N translational and 3N vibrational waves are 
propagated in the crystal. Accordingly, the potential 
energy of molecular interaction at equilibrium - -  the 
lattice binding energy - -  depends on the arrangement 
of the centers of gravity of molecules R~, as well as on 
their orientation determined by Euler angles. 

The frequencies of intramolecular vibrations being 
measured in tens of cm -I, room temperatures (and 
even temperatures of 150-200 °K) are high enough 
to make use of the approximation 1 - exp ( -  hv/kT)  ~_ 
hv/kT.  The vibrational part of the energy 

F~i~r = k T Z In { 1 - exp ( - hv/k T) } 

is easily transformed to: 

F~ir br = Eer - TSer = 6 R T  ln(h~/k T) 

where ~ is the mean geometric frequency, 

In ~= 1/(6N) Z l n  v. 

To bring this equation into agreement with the 
Debye interpolation formulae, one should introduce 
the 'Debye' temperature, 0 = eX/3(hv/k). 

The equation for the free energy is 

vibr F¢~ = 6 R T l n O / T - 2 R T .  

At temperatures below 200 °K the Debye interpola- 
tion formulae may be used. 

The characteristic temperature 0, as well as ~0, is a 
function of the arrangement of molecules in a crystal. 
Thus, the condition of crystal stability in the general 
case (with the molecule unchanged) becomes 

~F=~¢+6RT.~O/O=O. 
In the case the variations ~0 and 30 are determined 

by changes in the mutual arrangement and orientation 
of the molecules. At absolute zero the condition of 
stability changes to &0=0. Vibrational zero-point 
energy may be disregarded: at a maximum value 
(6 frequencies of 80 cm -1 each), zero-point energy of 
intermolecular vibrations equals 0.5 kcal.mo1-1, its 
possible changes caused by variations in mutual ar- 
rangement of molecules not exceeding 0.1 kcal. mol-~, 

whereas even for molecules of 10-12 atoms the heat of 
sublimation is more than 10 kcal. mo1-1. 

Thus, if an organic crystal structure is stable at 
absolute zero, it means that the lattice binding energy 
for this structure is very near to a minimum value. 

Energy of molecular interaction 

The only possibility of any progress in studying poten- 
tial energy of interaction is by assuming additivity. 
The study of this problem developed in a direction 
(e.g. Hirshfelder, 1954) where ~ was represented by 
the sum total of potentials T molecule-molecule, 

q~ = Z~uik . 

For a condensed state of a substance such an ap- 
proach creates insuperable difficulties owing to the 
strong orientational depence of ~u~k. Besides that, the 
principal fault of such an approach should be stressed, 
this fault being that the functions ~uik are different 
depending on the kind of molecules. Having ascer- 
tained, on the strength of quite comprehensive ex- 
periments, the type of T for molecules of one kind 
we are no further in understanding interaction poten- 
tials of other molecules. The finding of molecule- 
molecule potentials ~u, as is done in the case of real 
gases with the help of virial coefficients, appears to be 
quite a futile occupation. It is even more hopeless to 
expect to achieve any progress in this way in study- 
ing lattice binding energy of molecular crystals. 

We have made an attempt to avoid the above 
difficulty by using a tom-atom potentials (Kitajgorod- 
skij, 1961). The main assumption is that, to a suf- 
ficiently good approximation, the potential energy of 
molecular interaction may be represented as the sum 
total of pair interactions atom-atom. Thus, the energy 
tb of a molecular system is equal to Z '~k,  where the 
summation is taken over all pairs of atoms of different 
molecules. 

In order that the statement of the problem in question 
should be of heuristic interest, we shall take the follow- 
ing approximation as a basis: we shall assume that 
each atom of a given chemical kind may be regarded 
as superposition of a 'universal neutral atom' and 
a residual electric charge Xe at the atom centre. The 
specific character of an atom in a given molecule will 
be reflected only by the value of this residual charge. 
Energy of interaction is considered in the form 

XiXke 2 
• ik= Uik - - ,  

r~k 

where U~k are universal potentials for neutral atoms. 
For instance, all hydrocarbons are described in this 
approximation by three universal curves Ucc, Ucm 
and UHH. 

The introduction of a tom-atom potentials changes 
radically the approach towards the problem of inter- 
molecular interaction: on the basis of detailed experi- 
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mental research parameters of universal potentials 
may be found for a small group of 'standard'  sub- 
stances, while further these same curves will help to 
predict the properties of all other organic substances. 

Later on we shall see that the heuristic possibilities 
of the method of a tom-atom potentials are not all 
affected by the electrostatic component of intermole- 
cular energy, which in our scheme allows for chemical 
specificity of atoms of a given molecule. The r61e of 
this component is either quite insignificant, or may 
be taken into account without any special difficulty. 

An attempt at a calculation in which atomic inter- 
action potential is regarded as a function of only 
the distance between the centres of atoms appears to 
be justified. There also exists, of course, a dependence 
of interaction energy on the direction of the radius 
vector in relation to the corresponding valence bonds. 
Thus, for instance, there are many indications of the 
fact that the equilibrium distance of hydrogen-atom 
interaction with the radius vector perpendicular to the 
valence bond exceeds by one or two tenths of 1 /~ the 
equilibrium distance in the direction of the bond. This 
quite insignificant dependence is of little consequence 
for the calculation of intermolecular energy, as during 
the summation an automatic averaging of various 
directions of interatomic vectors in relation to the 
valence bonds takes place. 

No doubt, the most suitable analytic dependence 
for U(r)  is a combination of an inverse sixth power and 
an exponential: 

U(r)  = - A r  -6 + B exp ( -  r/Q) . 

It is expedient to introduce the following parameters 
instead of A, B, 0: Z = r ] r o ,  where r0 is the abscissa 
of the curve minimum; ~ = ro/Q; and U2/3, energy at 
Z equal to ~. Such a transformation is expedient inas- 
much as it makes obvious a pr ior i  the approximate 
values of the independent parameters: r0 values are 
known to us from the analysis of intermolecular 
distances in crystals*, U2/3 values (Z = 2 is, for in- 
stance, the distance between the closest non-bonded 
atoms in an aliphatic chain) are doubtless of the order 
of a few kcal.mol -x, and ct values may only be found 
in the relatively small interval from 11 to 15. There- 
fore we recommend that the foregoing equation should 
be rewritten thus: 

1 
U: U2/3 [ Z6 

6 exp~ exp ( - c~Z) ]  [11.4 6 e x p , / 3 ] .  

In our papers on interaction curves for hydrocar- 
bons (Kitajgorodskij, 1961) ~ values were assumed to 

* It should be noted that there occurs a slight 'compres- 
sion' upon the entry of a molecule into a crystal, and distan- 
ces in the crystal will be 5-10 % less than free equilibrium di- 
stances. 

be equal to 13, and U2/3=3"5 kcal.mo1-1 for all inter- 
actions C .  • • C, C" • • H, and H • • • H. These figures, 
as well as r0 values for three curves 3.8, 3.15 and 2.6 
are subject to refinement. 

Lattice binding energy of a molecular crystal 

The lattice binding energy of a molecular crystal 
related to one molecule is expressed by the equation 

q~ = ½S~0ik, 

where the summation takes place over all interatomic 
vectors connecting atoms of one molecule with all 
atoms of the remaining molecules. 

As indicated above - -  and we shall revert to this 
later on - -  the crystalline-field influence upon a 
molecule is insignificant in the majority of cases. If 
a molecule is to be considered rigid, then all inter- 
atomic vectors, and hence lattice binding energy ~b, 
may be presented as a function of the coordinates of 
the molecular centre of gravity, X Y Z ,  the Euler angles 
in relation to the lattice axes, and the parameters of 
the elementary cell. 

The optimum structure may be found, in principle, 
if we construct multidimensional surfaces of the 
function for all symmetry-consistent arrangements of 
the molecules. The coordinates of the absolute mini- 
mum of ~0 solve the problem. This is, of course an 
unwieldy problem. Solution of the potential-energy 
problem as well as the application of the geometric 
principle of close packing can give us some minima 
of nearly equal depth. We should be wrong to choose 
the deepest among them because small differences can 
be of the order of quantities neglected in the proposed 
scheme of energy calculation. 

But we are not now trying to solve the problem 
of investigating the energy surface without knowing 
the crystal symmetry. We are just trying to solve the 
following problem: let us consider the actual struc- 
ture of a crystal and construct the ~ surface in the 
vicinity of a point representing this structure. For 
instance, in the case of a naphthalene crystal function 
cb(~ol, ~02, ~03, a, b, c, fl) is constructed for the actual 
symmetry P21/a,  the parameter values being varied 
about the experimental point. If the proposed ap- 
proach is valid, then the surface has a minimum in 
the neighborhood of the said point. Surface shape in 
the vicinity of the equilibrium point may be compared 
with various experimental data. Suffice it to mention 
here that good fulfilment for organic crystals of the 
elasticity-coefficient equation 

c~2~ 
C~j- c%~c%j 

may serve as a basis for verification (Kitajgorodskij 
& Mirskaja, 1964). (Vibration-dependent components 
are small and can be accounted for. 
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The study of elasticity coefficients and of the expan- 
sion tensor as a function of temperature makes it 
possible to verify the equation of lattice binding- 
energy surface. The potential-well depth is determined 
by the heat of sublimation. With the help of a special 
program for an electronic computer we made a cal- 
culation of some cross-sections of energy surfaces. 
Shown in Fig. 1 are ~ curves as a function of cell 
parameters in the case of naphthalene. The electro- 
static component was not taken into account. This, 
still tentative, calculation is in quite satisfactory agree- 
ment with the small number of experimental data we 
have at our disposal. 

Energy-surface cross-sections in which 05 changes 
as a function of Euler angles constitute a convincing 
proof of the validity of the proposed calculation chart. 
Fig. 2 shows such cross-sections for anthracene. 
Curve minima show good agreement with experimental 
values: the actual structure corresponds to the mi- 
nimum of potential intermolecular energy. 

The role of electrostatic energy 

To find the role of the electrostatic energy as a lattice- 
energy component, it is necessary to obtain general 
energy equations, with explicit functional dependence of 
the energy on the lattice parameters and on the orienta- 
tion of dipole and quadrupole moments relative to 
the symmetry elements. To bring about the solution 
of the problem in such a general form and, at the same 
time, to make the calculation results readily compa- 
rable with specific structures, we have considered cubic 
and hexagonal lattices of close-packed spheres. 

o. A - - - -  Z,. A - -  c , A - - .  
7.6  7 .9  8 .2  8 .5  8 " 8 5 . 4  5 .7  6-0  6 .3  6 . 6 8 . 0  8 .3  8 .6  8"9 9 . 2  

- 1 4 [  " i ' - '14 [  " i ' ' - 1 4  ' '~ ' ' 
I I I fl , I I  , / f  , 

lel - 1 8  ~ - 1 8  ~ - 1 8  

The summation technique for dipole arrangements 
corresponding to different spatial groups will be 
published elsewhere. We shall give here the result for 
a dipole arrangement corresponding to the space 
group P21/a with Z = 4 :  

ti~el = (,u2/a 3) {0-857[- 3 + ( ~/8 sin qJ cos ~0 + cos ~,)2]} 

where/~ is the dipole moment, a is the shortest inter- 
dipole distance, and N is the dipole angle with the 
normal to the close-packed layer. 

This equation is typical enough to attract our atten- 
tion to the slow rate (probably in most cases) of change 
of ~el with angles ¢, ~, as compared with the similar 

1 0 4  
dependence of ~neutr .  The maximum value of 

f12/a3 ~ ~[J 
=0.13 deg -1. Let us assume that we have under conside- 
ration a molecule with a dipole moment of 4 Debye 
and a mean diameter of 7 A. In this example 8 # / c ~  
is of the order of 0.09 kcal. mol.-ldeg -1. If we consider 
the above-mentioned typical c u r v e  ~neutr(~0), it becomes 
obvious that dipole-dipole interaction forces cannot 
move a molecule out of the state t ~ n e u t r = 0  e v e n  in 
the case of molecules with a high dipole moment. 

In the case of non-dipole molecules, the quadru- 
pole-quadrupole interaction energy may be estimated 
in the same way. 

It does not follow from the above that the electro- 
static interaction has no effect at all upon the structure 
of a molecular crystal. Differences between maximum 
and minimum values of electrostatic energy, though 
not great, are not negligible either. In the foregoing 
dipole example ~e l  ranges from +3.5 kcal.mo1-1 to 
- 2 - 0  kcal.mo1-1. There are grounds for believing 
that dipoles will fall in the neighbourhood of the - 2 . 0  
kcal. tool -1 minimum, i.e. dipole angles in this example 
will be close to ~'=90~o. 

As the surface of ~neut r  as a function of the para- 
meters has a plurality of minima, an arrangement of 
molecules is formed in which the structure is to be 
found at one of the lowest minima of ~neutr, ~el being 
also minimal in such an arrangement. 

In the case of hydrocarbons the effect of electro- 
static interaction may be neglected. 

Fig. 1. Energy curves as a funct ion of cell parameters  
for naphthalene.  The condition of structure stability 

and the principle of close packing 

4---- 
60  63  66  69  7 2 1 0 4 1 0 7 1 1 0 1 1 3 1 1 6 5 6 5 9  62  65  68  

-21~  • I ~211 ' ; - ~--21~. " ' ' 
I I r Jb, /II / i lk 

~ - :  ,. v v #1 x , , . . . /  
2,-23 2-' -23 

Fig. 2. Energy curves as a function of Euler angles 
for anthracene.  

The condition of stability of structure at absolute zero 
is expressed by the equation: 

t ~ n e u t r  + t~ti/3el = 0 . 

As we saw in the preceding section, electrostatic ener- 
gy is a rather slowly-varying function of the structure 
parameters. Thus, if the Jet  surface is superposed on 
the surface of ~neu t r  as  a function of the parameters 
the shift in the position of the minima of tPneutr is 
insignificant, but the minima may change places, 
as shown in Fig. 3. The presence of the electrostatic 
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component leads to the assumption that a stable 
structure does not necessarily correspond to the ab- 
solute minimum of ~neutr. All we can say for certain 
is that one of  the lowest minima of  ~neutr corresponds 
to the actual structure. 

At arbitrary temperature the entropy factor comes 
into play. Of two minima with the same depth, that 
one is realized for which the conditions of molecular 
vibration favour a greater entropy (making use of a 
mechanical model we can say that the minimum with 
a wider potential well is more suitable), or to put it 
differently, that minimum is realized for which the 
characteristic temperature is lower. 

A phase transition with an increase of T occurs 
when an increase in lattice binding energy U1-U0 
may be compensated by an increment of TAS (Fig. 4). 
If a phase transition occurs, it means that the potential 
well U1 is wider than the potential well U0. When 
the temperature goes up so that TAS becomes equal 
to U1-Uo, the phase transition occurs. If there are 
no sufficiently "wide" wells among "higher" ones, 
then the substance will melt. 

Thus, heat fluctuations may transfer a structure 
from a lower minimum to a higher one, but do not 
bring the structure out of ~neutr surface minima. 
Therefore, the condition ~neutr=0 is the universal 
condition of structure stability, to which it should be 

\ 

\ 

. t ' ' - - - -  t }e l  + -~n 

Fig. 3. Electrostatic interactions do not violate close packing. 
They lead only to the choice from several of the most 
close-packed structures of the one which has the advantage 
in electrostatic energy. 

- - - - -  / -Jl  

uo 

Fig. 4. Phase transition transfers a structure from 
the deepest minimum to the next one. 

added that the actual minimum is not necessarily an 
absolute, but is one of  the lowest minima. 

The condition of structure stability, as well as the 
condition of minimum potential energy of molecular 
interaction, doubtless leads us to the principle of close 
packing of solid molecules. The following simplifica- 
tion is necessary for this transition: interaction curves 
of all pairs of atoms are characterized by uniform 
depth of potential wells (which we have already as- 
sumed), and the curve is replaced by a vertical straight 
line in the repulsion region. Under these conditions 
minima on the energy surface should coincide with 
those on the analogous volume surface. 

A rigorous proof of such an assumption would be 
a rigorous proof of the principle of close packing. 
Having no such proof we can only refer to the already- 
quoted paper by Zorky & Poraj-Kogic (1961), where 
it is shown for particular cases that one of the deepest 
minima on the volume surface built for solid molecules 
leads to the parameters of the real structure. 

Together with a trend towards close packing, a 
molecule in a crystal tends to retain part of its sym- 
metry elements, provided this retention does not cause 
a serious loss of density. This tendency is believed to 
be of an entropic nature. It seems natural to assume 
that in a more symmetric position a molecule has a 
greater freedom of vibrations (the structure occupies 
a wider potential well on the multidimensional energy 
surface). Unfortunately this assumption, too, is purely 
hypothetical, though an attempt at a rigorous proof 
is not utterly hopeless. It is to be supposed that some 
structures, in which a molecule occupies a special 
position on the symmetry axis or plane, are unstable 
at low temperatures; however, high barriers of phase 
transformation prevent a more stable structure from 
manifesting itself. 

The effect 
of the crystalline field upon the shape of the molecule 

Using the proposed idea for calculating intermolecular 
interactions we can calculate the crystalline-field po- 
tential at any point of the lattice. This potential is 
formed by the field of neutral atoms (this field being 
different for different types of atom) and the electro- 
static potential. It is difficult to evaluate the electro- 
static potential in a general form, as this potential 
represents a small difference between large quantities. 
As mentioned above, the electrostatic potential changes 
in value from one point to another considerably slower 
than the potential of neutral atoms. Approximate 
evaluations show that the electrical potential gradient 
appears negligible as compared with that of the neutral- 
atom potential, at any rate when the residual electrical 
charges of atoms are not too great. The intensity of 
the field of neutral atoms may be estimated from the 
equations given above (a chart of the crystalline field 
may be plotted for particular cases). Calculations 

A C 18 - -  I *  



590 T H E R M O D Y N A M I C  STABILITY OF O R G A N I C  CRYSTALS 

show that these forces do not exceed 10 -7 dyne in 
order of magnitude. It is quite obvious that the forces 
are directed into the molecule, since the crystalline 
field as a whole exerts pressure upon the molecule. 

Crystalline-field forces are offset by intramolecular 
forces, i.e. by the elasticity of valence-bond compres- 
sion, the elasticity of valence-angle deformation, and 
elasticity of rotation about ordinary bonds. 

Using typical values of bond and angle elasticities 
we immediately find the corresponding deformations 
to be negligible and undetectable by methods of X-ray 
diffraction analysis. It is only for compressing non- 
bonded atoms within the first 5 to 15Yo fractions of 
equiIibrlum distance that an insignificant force of the 
order of 10 -7 dyne is necessary. Therefore such com- 
pression, including the corresponding rotations about 
ordinary bonds, will be the only consequence of 
crystalline-field influence upon a molecule (at any rate, 
in the case of molecules of hydrocarbon type, whose 
atoms do not carry any charges)*. Thus, distortion of 
flat aromatic molecules, observed in X-ray diffraction 
analysis of crystals, is caused by the action of intra- 
molecular forces only. 

The smallness of intermolecular forces brings about 
a situation in which the conformation of a molecule in 
a crystal (with the exception of the already-mentioned 
case) is very close to the extreme conformation with 
respect to the value of intramolecular energy. For the 
most part, a molecule possesses the same conformation 
in a crystal as in a gas, i.e. the arrangement of atoms 
corresponds to the minimum of potential energy. But 
there may be cases when the conformation of a mole- 
cule in a crystal corresponds to the maximum of energy. 
We shall observe such cases when the conformation 
of a molecule with a maximum energy is, at the same 
time, minimal in relation to the molecule's own vo- 
lume. Indeed, bearing in mind that the crystalline 
field exerts pressure upon a molecule, it seems natural 
that such cases are possible when an increase in the 
molecule's own energy is compensated by a decrease 

* It seems to me that this circumstance should be made 
use of in the X-ray diffraction analysis of organic crystals. 
It is quite clear, for instance, that all sides of the benzene 
molecule are of equal length and their inequality may be 
only due to experimental error; similarly, planar symmetry 
of the naphthalene molecule is beyond doubt, and any differen- 
ces in the length of bonds in the crystal should be due to 
experimental and calculation errors and do not reflect the 
real state of things. We can be equally sure of the identity of 
two crystallographically non-equivalent molecules in such 
crystals as acenaphthene. 

When we try to find a structure with the help of the least- 
squares method, we should take into account these necessary 
equalities of bond lengths and angles. This reduction in the 
number  of parameters will, quite naturally, increase the degree 
of accuracy in determining other parameters. It is possible to 
determine the opt imum structure by finding a structure built 
up of molecules with regular symmetry, which is closest of all 
to the system of experimentally found maxima. It seems still 
better to introduce the requirements of molecular symmetry 
into eht least-squares program, e.g. according to the chart 
proposed by Waser (1963). 

in the lattice energy, this decrease being due to the 
possibility of packing molecules in a smaller volume. 
Examples of this type are known in the literature: 
molecules of biphenyl and hexachlorobenzene, which 
are not fiat in the gas, become fiat in the crystal. 

The above-mentioned assumption could be verified 
by comparing the heat of sublimation of these substan- 
ces with the calculated lattice binding energy, but it 
would be somewhat premature to make such a cal- 
culation at present as atom-atom potentials are not 
yet sufficiently defined. 

Intermolecular hydrogen bonds 

The presence of strong hydrogen bonds between mole- 
cules considerably complicates the problem. The lat- 
tice binding energy increases quite sharply and the 
condition of structure stability is the minimization of 
the sum total of potential-energy components, already 
discussed in the present paper, and the hydrogen-bond 
energy. As the energy of each hydrogen bond amounts 
to several kcal. mo1-1 it is obvious that, in the first place, 
the structure is built up so as to saturate the maximum 
number of hydrogen bonds. In a number of cases this 
circumstance probably involves sacrifices on the part 
of the potential energy of neutral-atom interaction. 
Practical experience in crystallochemistry has shown 
that this sacrifice is not very great. Usually a crystal 
is formed in which the tendency towards close pack- 
ing is realized simultaneously with the saturation of 
all hydrogen bonds. Nevertheless, the theory is greatly 
complicated. Hydrogen bonds are directed, and devi- 
ations of the atoms forming it from a straight line 
are connected with a certain loss of energy which is 
not easy to estimate. 

It is also obvious that the dynamics of the lattice, 
transformed by hydrogen bonds into a three-dimen- 
sional skeleton or into a system of band or chains, 
undergoes substantial changes. 

The development of a theory of organic crystals 
with hydrogen intermolecular bonds is a problem for 
future research. 
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